AI Trading & Market Intelligence Agent
Advanced AI-powered trading analysis with real-time market intelligence
typescript
import { cronflow } from 'cronflow';
import { z } from 'zod';
// Types for better type safety
interface MarketData {
symbol: string;
price: number;
volume: number;
change24h: number;
marketCap: number;
volatility: number;
technicalIndicators: {
rsi: number;
macd: number;
bollinger: { upper: number; lower: number; middle: number };
support: number;
resistance: number;
};
}
interface SentimentAnalysis {
overallSentiment: number; // -1 to 1
newsImpact: number;
socialBuzz: number;
fearGreedIndex: number;
keyEvents: string[];
confidenceScore: number;
}
interface TradingRecommendation {
symbol: string;
action: 'BUY' | 'SELL' | 'HOLD';
confidence: number;
targetPrice: number;
stopLoss: number;
reasoning: string;
riskLevel: 'LOW' | 'MEDIUM' | 'HIGH';
timeHorizon: 'SHORT' | 'MEDIUM' | 'LONG';
}
interface AIAnalysis {
recommendations: TradingRecommendation[];
portfolioOptimization: {
suggestedAllocations: { [symbol: string]: number };
riskScore: number;
expectedReturn: number;
sharpeRatio: number;
};
marketOutlook: {
direction: 'BULLISH' | 'BEARISH' | 'NEUTRAL';
confidence: number;
keyFactors: string[];
};
}
interface RiskAnalysis {
adjustedRecommendations: Array<
TradingRecommendation & {
adjustedConfidence: number;
positionSize: number;
}
>;
riskMetrics: {
portfolioVaR: number;
maxDrawdown: number;
correlation: number;
diversificationScore: number;
};
alerts: string[];
}
interface PortfolioSimulation {
projectedReturns: { [period: string]: number };
riskAssessment: string;
capitalRequired: number;
impactAnalysis: {
sharpeImprovement: number;
diversificationImpact: number;
};
}
interface ApprovalData {
sessionId: string;
highRiskTrades: TradingRecommendation[];
totalCapital: number;
projectedReturns: { [period: string]: number };
riskMetrics: {
portfolioVaR: number;
maxDrawdown: number;
correlation: number;
diversificationScore: number;
};
}
// Market Data & AI Analysis Functions
async function fetchMarketData(symbols: string[]): Promise<MarketData[]> {
// Simulate real market data - replace with actual API calls
return symbols.map(symbol => ({
symbol,
price: Math.random() * 50000 + 1000,
volume: Math.random() * 1000000 + 100000,
change24h: (Math.random() - 0.5) * 20,
marketCap: Math.random() * 1000000000 + 10000000,
volatility: Math.random() * 5 + 1,
technicalIndicators: {
rsi: Math.random() * 100,
macd: (Math.random() - 0.5) * 100,
bollinger: {
upper: Math.random() * 55000 + 5000,
lower: Math.random() * 45000 + 1000,
middle: Math.random() * 50000 + 3000,
},
support: Math.random() * 45000 + 1000,
resistance: Math.random() * 55000 + 5000,
},
}));
}
async function analyzeSentiment(
newsData: any[],
socialData: any[]
): Promise<SentimentAnalysis> {
// Simulate advanced sentiment analysis
const overallSentiment = (Math.random() - 0.5) * 2;
const newsImpact = Math.random();
const socialBuzz = Math.random();
const fearGreedIndex = Math.random() * 100;
return {
overallSentiment,
newsImpact,
socialBuzz,
fearGreedIndex,
keyEvents: [
'Federal Reserve meeting scheduled',
'Tech earnings season begins',
],
confidenceScore: Math.random() * 0.3 + 0.7, // 0.7-1.0
};
}
async function runAITradingModel(
marketData: MarketData[],
sentiment: SentimentAnalysis,
portfolio: any
): Promise<AIAnalysis> {
// Simulate advanced AI trading analysis
return {
recommendations: marketData.map(data => ({
symbol: data.symbol,
action: ['BUY', 'SELL', 'HOLD'][Math.floor(Math.random() * 3)] as
| 'BUY'
| 'SELL'
| 'HOLD',
confidence: Math.random() * 0.4 + 0.6,
targetPrice: data.price * (1 + (Math.random() - 0.5) * 0.2),
stopLoss: data.price * (0.9 + Math.random() * 0.05),
reasoning: `Technical analysis suggests ${data.technicalIndicators.rsi > 70 ? 'overbought' : 'oversold'} conditions`,
riskLevel: ['LOW', 'MEDIUM', 'HIGH'][Math.floor(Math.random() * 3)] as
| 'LOW'
| 'MEDIUM'
| 'HIGH',
timeHorizon: ['SHORT', 'MEDIUM', 'LONG'][
Math.floor(Math.random() * 3)
] as 'SHORT' | 'MEDIUM' | 'LONG',
})),
portfolioOptimization: {
suggestedAllocations: Object.fromEntries(
marketData.map(d => [d.symbol, Math.random()])
),
riskScore: Math.random() * 10,
expectedReturn: Math.random() * 20 + 5,
sharpeRatio: Math.random() * 2 + 0.5,
},
marketOutlook: {
direction: ['BULLISH', 'BEARISH', 'NEUTRAL'][
Math.floor(Math.random() * 3)
] as 'BULLISH' | 'BEARISH' | 'NEUTRAL',
confidence: Math.random() * 0.3 + 0.7,
keyFactors: [
'Economic indicators',
'Geopolitical events',
'Market liquidity',
],
},
};
}
async function executeRiskManagement(
recommendations: TradingRecommendation[],
portfolio: any
): Promise<RiskAnalysis> {
// Simulate risk management calculations
return {
adjustedRecommendations: recommendations.map(rec => ({
...rec,
adjustedConfidence: rec.confidence * 0.9, // Risk adjustment
positionSize: Math.min(rec.confidence * 0.1, 0.05), // Max 5% position
})),
riskMetrics: {
portfolioVaR: Math.random() * 0.1,
maxDrawdown: Math.random() * 0.15,
correlation: Math.random(),
diversificationScore: Math.random() * 100,
},
alerts:
Math.random() > 0.7
? ['High correlation detected between positions']
: [],
};
}
// News and Social Media Functions
async function fetchMarketNews(symbols: string[]): Promise<any[]> {
// Simulate news fetching
return [
{ title: 'Market volatility increases', sentiment: 0.3, impact: 'HIGH' },
{ title: 'Tech stocks rally continues', sentiment: 0.7, impact: 'MEDIUM' },
];
}
async function fetchSocialSentiment(symbols: string[]): Promise<any[]> {
// Simulate social media sentiment
return [
{ platform: 'twitter', mentions: 1500, sentiment: 0.6 },
{ platform: 'reddit', mentions: 800, sentiment: 0.4 },
];
}
// Notification Functions
async function sendTradingAlert(
message: string,
priority: 'HIGH' | 'MEDIUM' | 'LOW',
data: any
) {
console.log(`🚨 [${priority}] Trading Alert: ${message}`);
console.log('📊 Data:', JSON.stringify(data, null, 2));
// Replace with actual notification service (Slack, Discord, Email, SMS)
}
async function updateDashboard(analysisData: any) {
console.log('📈 Dashboard updated with latest analysis');
// Replace with actual dashboard/database update
}
async function logTradingDecision(decision: any) {
console.log('📝 Trading Decision Logged:', {
timestamp: new Date().toISOString(),
recommendations: decision.recommendations?.length || 0,
portfolioRisk: decision.riskMetrics?.portfolioVaR || 0,
processingTime: decision.processingTime,
});
}
// Portfolio simulation functions
async function simulatePortfolioImpact(
recommendations: TradingRecommendation[],
currentPortfolio: any
): Promise<PortfolioSimulation> {
return {
projectedReturns: {
'1D': Math.random() * 2 - 1,
'1W': Math.random() * 5 - 2.5,
'1M': Math.random() * 15 - 7.5,
'3M': Math.random() * 30 - 15,
},
riskAssessment: 'MODERATE',
capitalRequired: recommendations.reduce(
(sum, rec) => sum + rec.targetPrice * 100,
0
),
impactAnalysis: {
sharpeImprovement: Math.random() * 0.5,
diversificationImpact: Math.random() * 0.3,
},
};
}
// Define the AI Trading Agent Workflow
const aiTradingAgent = cronflow.define({
id: 'ai-trading-agent',
name: 'AI Trading & Market Intelligence Agent',
description:
'Advanced AI-powered trading analysis with real-time market intelligence',
hooks: {
onSuccess: ctx => {
console.log('✅ Trading analysis completed successfully');
console.log('⚡ Performance:', {
totalSteps: ctx.steps?.length || 0,
processingTime:
Date.now() - (ctx.steps?.[0]?.output?.startTime || Date.now()),
recommendationsGenerated: ctx.last?.recommendations?.length || 0,
});
},
onFailure: ctx => {
console.log('❌ Trading analysis failed:', ctx.error);
sendTradingAlert('Trading Agent Error', 'HIGH', { error: ctx.error });
},
},
});
aiTradingAgent
.onWebhook('/webhooks/trading-analysis', {
schema: z.object({
symbols: z.array(z.string()).min(1).max(20),
analysisType: z.enum(['QUICK', 'DEEP', 'FULL_PORTFOLIO']).default('DEEP'),
riskTolerance: z
.enum(['CONSERVATIVE', 'MODERATE', 'AGGRESSIVE'])
.default('MODERATE'),
timeHorizon: z.enum(['DAY', 'SWING', 'POSITION']).default('SWING'),
portfolioValue: z.number().positive().default(100000),
userId: z.string(),
preferences: z
.object({
maxPositionSize: z.number().min(0.01).max(0.3).default(0.1),
enableAlerts: z.boolean().default(true),
riskLevel: z.number().min(1).max(10).default(5),
})
.optional(),
}),
})
// Step 1: Initialize analysis session
.step('initialize-analysis', async ctx => {
console.log('🚀 Initializing AI Trading Analysis...');
const { symbols, analysisType, userId } = ctx.payload;
const sessionId = `trading_${userId}_${Date.now()}`;
const startTime = Date.now();
console.log(
`📊 Analyzing ${symbols.length} symbols: ${symbols.join(', ')}`
);
console.log(`🎯 Analysis type: ${analysisType}`);
return {
sessionId,
startTime,
symbols,
analysisType,
initialized: true,
};
})
// Step 2: Parallel data gathering (this is where Cronflow shines!)
.parallel([
// Market data collection
async ctx => {
console.log('📈 Fetching real-time market data...');
const marketData = await fetchMarketData(ctx.last.symbols);
return { marketData };
},
// News sentiment analysis
async ctx => {
console.log('📰 Analyzing market news...');
const newsData = await fetchMarketNews(ctx.last.symbols);
return { newsData };
},
// Social media sentiment
async ctx => {
console.log('💬 Analyzing social sentiment...');
const socialData = await fetchSocialSentiment(ctx.last.symbols);
return { socialData };
},
])
// Step 3: Advanced sentiment analysis
.step('analyze-market-sentiment', async ctx => {
console.log('🧠 Running advanced sentiment analysis...');
const [marketResult, newsResult, socialResult] = ctx.last;
const sentimentAnalysis = await analyzeSentiment(
newsResult.newsData,
socialResult.socialData
);
return {
marketData: marketResult.marketData,
newsData: newsResult.newsData,
socialData: socialResult.socialData,
sentimentAnalysis,
sentimentProcessed: true,
};
})
// Step 4: AI Trading Model Analysis
.step('run-ai-trading-model', async ctx => {
console.log('🤖 Running AI trading model...');
const portfolio = {
value: ctx.payload.portfolioValue,
riskTolerance: ctx.payload.riskTolerance,
preferences: ctx.payload.preferences,
};
const aiAnalysis = await runAITradingModel(
ctx.last.marketData,
ctx.last.sentimentAnalysis,
portfolio
);
return {
...ctx.last,
aiAnalysis,
modelProcessed: true,
};
})
// Step 5: Risk management and validation
.step('apply-risk-management', async ctx => {
console.log('🛡️ Applying risk management rules...');
const portfolio = {
value: ctx.payload.portfolioValue,
riskTolerance: ctx.payload.riskTolerance,
};
const riskAnalysis = await executeRiskManagement(
ctx.last.aiAnalysis.recommendations,
portfolio
);
return {
...ctx.last,
riskAnalysis,
riskValidated: true,
};
})
// Step 6: Portfolio impact simulation
.step('simulate-portfolio-impact', async ctx => {
console.log('🎯 Simulating portfolio impact...');
const currentPortfolio = {
value: ctx.payload.portfolioValue,
positions: [], // Would be actual positions
};
const simulation = await simulatePortfolioImpact(
ctx.last.riskAnalysis.adjustedRecommendations,
currentPortfolio
);
return {
...ctx.last,
simulation,
simulationComplete: true,
};
})
// Step 7: Decision point - high-impact trades need approval
.if('needs-approval', ctx => {
const highImpactTrades =
ctx.last.riskAnalysis.adjustedRecommendations.filter(
rec => rec.confidence > 0.8 && rec.riskLevel === 'HIGH'
);
const totalCapitalRequired = ctx.last.simulation.capitalRequired;
const portfolioPercentage =
totalCapitalRequired / ctx.payload.portfolioValue;
// Require approval if high-risk or large position
return highImpactTrades.length > 0 || portfolioPercentage > 0.2;
})
.step('prepare-approval-request', async ctx => {
console.log('👤 Preparing for human approval...');
const highRiskTrades = ctx.last.riskAnalysis.adjustedRecommendations.filter(
rec => rec.riskLevel === 'HIGH'
);
return {
approvalData: {
sessionId: ctx.steps['initialize-analysis'].output.sessionId,
highRiskTrades,
totalCapital: ctx.last.simulation.capitalRequired,
projectedReturns: ctx.last.simulation.projectedReturns,
riskMetrics: ctx.last.riskAnalysis.riskMetrics,
},
preparedAt: Date.now(),
};
})
.humanInTheLoop({
timeout: '30m',
description: 'High-impact trading decisions require approval',
onPause: async (ctx, token) => {
console.log('🛑 High-impact trades detected - approval required');
await sendTradingAlert(
'High-Impact Trading Decision Requires Approval',
'HIGH',
{
token,
capitalRequired: ctx.last.approvalData.totalCapital,
projectedReturn: ctx.last.approvalData.projectedReturns['1M'],
approvalUrl: `https://trading.yoursite.com/approve/${token}`,
}
);
},
})
.step('process-trading-approval', async ctx => {
if (ctx.last.timedOut) {
return {
approved: false,
reason: 'Approval timeout - trades cancelled for safety',
finalRecommendations: [],
};
}
const approvedTrades = ctx.last.approved
? ctx.steps['prepare-approval-request']?.output?.approvalData
?.highRiskTrades || []
: [];
return {
approved: ctx.last.approved,
reason: ctx.last.reason,
finalRecommendations: approvedTrades,
};
})
.else()
.step('auto-approve-low-risk', async ctx => {
console.log('✅ Auto-approving low-risk recommendations...');
return {
approved: true,
reason: 'Low-risk trades auto-approved',
finalRecommendations: ctx.last.riskAnalysis.adjustedRecommendations,
};
})
.endIf()
// Step 8: Generate final trading report
.step('generate-trading-report', async ctx => {
console.log('📋 Generating comprehensive trading report...');
const processingTime =
Date.now() - ctx.steps['initialize-analysis'].output.startTime;
const recommendations = ctx.last.finalRecommendations || [];
const report = {
sessionId: ctx.steps['initialize-analysis'].output.sessionId,
timestamp: new Date().toISOString(),
processingTime,
marketAnalysis: {
symbols: ctx.payload.symbols,
marketData: ctx.steps[
'analyze-market-sentiment'
]?.output?.marketData?.slice(0, 3), // Truncate for display
sentiment:
ctx.steps['analyze-market-sentiment']?.output?.sentimentAnalysis,
},
recommendations: recommendations.map(rec => ({
symbol: rec.symbol,
action: rec.action,
confidence: rec.adjustedConfidence || rec.confidence,
reasoning: rec.reasoning,
riskLevel: rec.riskLevel,
})),
portfolioImpact:
ctx.steps['simulate-portfolio-impact']?.output?.simulation,
riskMetrics:
ctx.steps['apply-risk-management']?.output?.riskAnalysis?.riskMetrics,
approval: {
required: !!ctx.steps['prepare-approval-request']?.output,
status: ctx.last.approved ? 'APPROVED' : 'PENDING/REJECTED',
},
};
return { report, generated: true };
})
// Step 9: Execute notifications and logging
.parallel([
// Send alerts for high-confidence recommendations
async ctx => {
const highConfidenceRecs = ctx.last.report.recommendations.filter(
rec => rec.confidence > 0.85
);
if (
highConfidenceRecs.length > 0 &&
ctx.payload.preferences?.enableAlerts
) {
await sendTradingAlert(
`${highConfidenceRecs.length} high-confidence trading opportunities detected`,
'MEDIUM',
{ recommendations: highConfidenceRecs }
);
}
return { alertsSent: highConfidenceRecs.length };
},
// Update dashboard
async ctx => {
await updateDashboard(ctx.last.report);
return { dashboardUpdated: true };
},
// Log trading decision
async ctx => {
await logTradingDecision({
...ctx.last.report,
processingTime: ctx.last.report.processingTime,
});
return { decisionLogged: true };
},
])
// Background action: Update ML model with results
.action('update-ml-model', async ctx => {
console.log('🧠 Updating ML model with analysis results...');
// This would feed results back into the AI model for continuous learning
console.log('ML model updated with latest market analysis');
});
// Start the AI Trading Agent
console.log('🚀 Starting AI Trading & Market Intelligence Agent...');
cronflow.start();
console.log('📋 Available endpoints:');
console.log(
' POST /webhooks/trading-analysis - Analyze markets and generate trading recommendations'
);
console.log('');
console.log('📖 Example usage:');
console.log(`curl -X POST http://localhost:3000/webhooks/trading-analysis \\
-H "Content-Type: application/json" \\
-d '{
"symbols": ["BTC", "ETH", "TSLA", "AAPL"],
"analysisType": "DEEP",
"riskTolerance": "MODERATE",
"timeHorizon": "SWING",
"portfolioValue": 50000,
"userId": "trader_123",
"preferences": {
"maxPositionSize": 0.15,
"enableAlerts": true,
"riskLevel": 6
}
}'`);
console.log('');
console.log('🔧 Advanced features:');
console.log(' - Real-time market data analysis');
console.log(' - Multi-source sentiment analysis');
console.log(' - AI-powered trading recommendations');
console.log(' - Risk management and portfolio optimization');
console.log(' - Human approval for high-impact trades');
console.log(' - Comprehensive reporting and analytics');
// Export for external use
export { cronflow, aiTradingAgent };